kentsu.dat

何かその時の興味でいろいろする人。最近はScala使ってる。

Twitter APIのScalaラッパーを作っている話

はじめに

夏休み、特にすることがなかったのとTwitter4Jに憧れてScalaでTwitter4SというTwitter APIのラッパーを作り始めた。
初めは標準ライブラリだけでごり押すつもりが色々ありいくつかライブラリを使用しているがある程度出来た為、概要をまとめる。

ただまだまだ作りこまないといけないため、今後の更新によってはこのブログの記事は当てにならなくなる。
Github上で管理してるものが全てであり、どのように動作するかはソースコードが物語っている。

Github

このライブラリは次のレポジトリで公開されている。

github.com

また、github pagesでこれらのjarファイルを公開しているため次をbuild.sbtに追加すると自分のプロジェクトで使用できるようになる。

resolvers += "Maven Repo on github" at "https://lrf141.github.io/Twitter4S/"

libraryDependencies ++= Seq(
     "Twitter4S" % "twitter4s_2.12" % "1.0.0"
)

主要なクラスやオブジェクトに関するドキュメントを次のリンクで公開しているので何かあればそちらも参照して欲しい。

https://lrf141.github.io/Twitter4S/

ソースコード概要

ドキュメントで公開してるソースファイルとは別にnet,utilパッケージが存在する
ディレクトリ構成は次の通り。

├── src
│   ├── main
│   │   └── scala
│   │       └── twitter4s
│   │           ├── APIKeys.scala
│   │           ├── HomeTimeLine.scala
│   │           ├── SearchBase.scala
│   │           ├── Status.scala
│   │           ├── StatusBase.scala
│   │           ├── TimeLineBase.scala
│   │           ├── TimeLineUser.scala
│   │           ├── Tweet.scala
│   │           ├── Tweets.scala
│   │           ├── Twitter.scala
│   │           ├── TwitterFactory.scala
│   │           ├── TwitterImpl.scala
│   │           ├── UserArray.scala
│   │           ├── UserStatus.scala
│   │           ├── UserTimeLine.scala
│   │           ├── net
│   │           │   ├── HttpRequest.scala
│   │           │   ├── HttpResponse.scala
│   │           │   └── oauth
│   │           │       └── OAuthRequest.scala
│   │           └── util
│   │               └── JsonDecoder.scala

net package

このパッケージではhttp requestやOAuthに関するクラスを管理している。
OAuthRequest.scalaOAuth認証に必要なパラメータや署名などを生成できる。
Twitter APIを利用するにあたってOAuthはver 1.0に準拠している。
それらを利用してHttpRequest.scalaでPOST/GETに関する機能を実装している。


ここでのBase64変換にapache commons codecを利用している。

util package

このパッケージではこのプロジェクトで使用するネットワークや本体に関係ないクラスを管理している。
この記事公開時点ではJsonDecoder.scalaという中身が非常に行儀悪いクラスのみである。

このクラスではStringの値として受け取ったjsonを解析しcase classのメンバに代入することを主としている。
jsonの解析にcirceというscala製のライブラリを使用している。

src/main/scala直下 twitter4s package

ここではtwitter apiを利用するための色々なクラスやオブジェクト、トレイトが存在する。
主にjsonを解析した際、データの受け皿となるcase classだが、リクエストに必要なメソッドを含むトレイトやそれを実際に実装しているTwitterImpl.scalaなどがメインになっている。

必要な機能は***Base.scalaという名前でトレイトとして存在しそれらはTwitter.scalaのトレイトにミックスインされている。
このライブラリを使用する際にはそれらを実装したTwitterImplのメソッドを呼び出している。

またそのクラスを継承したTwitterFactoryクラスがありライブラリユーザはこれからインスタンスを受け取り各種メソッドを呼び出す仕組みになっている。
このクラスはシングルトンである。

加えてcase classをjson解析で多用しているため解析によって受け取った値は好きなように使用することが出来る。

使用方法

最初に書いたようにbuild.sbtもしくはBuild.scala内にresolversとlibraryDependenciesを追加してもらえるとすぐに使用できる。
具体的な使用方法については公開しているレポジトリのREADME.mdを参照して欲しい。

プルリクについて

プルリクについては、たまに「英語でないとダメ」という意見も見受けられるがこのレポジトリに関しては日本語でのプルリクも受け付けている。
公開されているソースコードをみて、「このコードクソだな」などある場合は積極的にプルリクを送って欲しい。

形態素解析とngram、マルコフ連鎖を用いてもののけ姫風の文章を生成する。

形態素解析とngram,マルコフ連鎖を組み合わせる

前回紹介した記事では

rabbitfoot141.hatenablog.com

ngramをいくつかの文字で分割するタイプにしたが今回は形態素解析を用いていくつかの形態素で分割し、マルコフ連鎖を使って文章を生成する。

今回の概要

形態素解析は今回はライブラリを用いて行う。
言語はScalaで書くので「kuromoji」を用いる。

ビルドツールにsbtを用いているのでbuild.sbtに次を追加。

resolvers += "Atilika Open Source repository" at "http://www.atilika.org/nexus/content/repositories/atilika"
libraryDependencies ++= Seq(
  "org.atilika.kuromoji" % "kuromoji" % "0.7.7"
)

前回は夏目漱石の「こころ」を対象データにしたが今回はもののけ姫のサンでいこうと思う。
このサイトから借りた。
lovegundam.dtiblog.com

形態素解析を行う

今回はkuromojiという日本語の形態素解析器を使うので上記の依存関係などを記述しておく必要がある。

形態素解析が何かはウィキペディア等を参照してほしい。
ライブラリを使うと簡単なので今回はコードのみ紹介する。

import org.atilika.kuromoji.{Tokenizer,Token}
import collection.JavaConversions._
import scala.collection.mutable.{Map,ArrayBuffer}
import scala.io.{Source,BufferedSource}

object NgramMorph{

  private [this] val tokenizer = Tokenizer.builder.mode(Tokenizer.Mode.NORMAL).build
  private [this] val n:Int = 1

  def main(args:Array[String]):Unit = {

    val sourceLine:Iterator[String] = Source.fromResource("san_tmp.dat").getLines
    
    for(line <- sourceLine){
      val tokens = tokenizer.tokenize(line)
      tokens.foreach{ t => 
        val token:Token = t.asInstanceOf[Token]
        println(s"${token.getSurfaceForm}")
      }
    }
  }
}

マルコフ連鎖を用いて会話文を自動生成する

ここではngramとマルコフ連鎖を用いる。
今回はn = 1とする。

import org.atilika.kuromoji.{Tokenizer,Token}
import collection.JavaConversions._
import scala.collection.mutable.{Map,ArrayBuffer}
import scala.io.{Source,BufferedSource}
import java.util.Random


object NgramMorph{

  private [this] val tokenizer = Tokenizer.builder.mode(Tokenizer.Mode.NORMAL).build
  private [this] val n:Int = 1

  def main(args:Array[String]):Unit = {

    val sourceLine:Iterator[String] = Source.fromResource("san_tmp.dat").getLines
   
   
   val ngramMap:Map[String,ArrayBuffer[String]] = Map[String,ArrayBuffer[String]]()
   
    
    //一行ずつ形態素解析をしてngramで分割
    for(line <- sourceLine){
      val tokens = tokenizer.tokenize(line)

      var nowSurface:String = tokens.head.asInstanceOf[Token].getSurfaceForm

      if( !ngramMap.contains(nowSurface) )
        ngramMap += (nowSurface -> ArrayBuffer.empty[String])

      tokens.tail.foreach{ t => 
        val token:Token = t.asInstanceOf[Token]
        var tmpSurface:String = token.getSurfaceForm
        var ngramArray:ArrayBuffer[String] = ngramMap(nowSurface)
        
        ngramArray += tmpSurface

        ngramMap.update(nowSurface,ngramArray)
        if(!ngramMap.contains(tmpSurface))
          ngramMap += (tmpSurface -> ArrayBuffer.empty[String])
        nowSurface = tmpSurface
      }
    }


    //マルコフ連鎖を使って会話文生成
    val rnd:Random = new Random
    var result_str:String = ngramMap.keys.toList(rnd.nextInt(ngramMap.size))

    var tmp_str:String = result_str
    while(!result_str.contains("。")){
      var next_wordArray:ArrayBuffer[String] = ngramMap(tmp_str)
      tmp_str = next_wordArray(rnd.nextInt(next_wordArray.size))
      result_str += tmp_str
    }

    println(result_str)

  }
}

このプログラムを10回動かして得た出力結果は次の通り

きかないもの…。
動きはじめた。
知らせてもここはシシ神さまがおかしいの礼を言いな。
だろう。
においで木をシシ神にこのことも人間のか。
味方だよ。
アシタカ、人間くさい。
味方だ。
けがれるだけだから…。
がんばって。

今回はもののけ姫のサンのセリフを対象に会話文生成を行ったが、前回使用した夏目漱石のこころに比べると圧倒的に量が少ないので微妙な結果になってしまったが形態素解析を用いたので意味不明な文は格段に減少した。

ちなみに前回使った夏目漱石のこころを同様に試すと次のようになった

姿を引いたの驚いたけれども横文字のさせる勇気に、私のです。
捌けた。
邯鄲という意味を読み出しました。
盛り潰そう。
邪魔をできるだけ切り詰めたの様子が一面に、気の外れた室で、因循らしく見える動作はよほど経っていなん。
済まなくなります。
使用さが少しもそれが帰った軽薄に書く事まで書いたと私に、お母さん一週間のようにはすぐ引き受けたので私はいよいよまた、私に向ってもらった。
会いにしてなお目立ちます。
鈍って見に吹き払った。
曇りが、こっそりこの世にもう熱心に気が付くはずが、彼の中に裹まれて植え付けられてくれさえ頼りに取った。

n = 3あたりでやるとうまくいくかもしれない。

n-gramとマルコフ連鎖の理論と実装、もちろんScalaを使って。

対話システムを作りたかった

対話システムという名の対話botを作っているがいきなり深層学習はハードルが高すぎたから人工無能から始めることにした。

この記事の流れ

今回の記事は次のように進んでいく。

と、まぁほとんどがアルゴリズム的な話になりそう。

n-gramとは

n-gramとは形態素解析のように辞書を使って文章を品詞分解していくのではなく「文字単位で文章を分割していく」手法のこと。
なので、形態素解析のように辞書を必要とするわけではない。

またn-gramのnが何を指すかというとn文字で分割するという意味である。


1-gramは1文字ずつ分割する。
2-gramは2文字ずつ分割する。
3-gramは3文字ずつ分割する。

みたいに。

実際には次のように分割していく。

文章:今日は雨のようだ。
条件:n = 2とする

分割:
今日
日は
は雨
雨の
のよ
よう
うだ
だ。

ただここで問題なのがnが小さすぎるとその自然言語にもよるが不適切な結果を生むことに成る。

文章:東京都庁
条件:n = 2

分割:
東京
京都
都庁

n-gramを使って文字列分割を行うと本来想定している最適解とは異なる場合がある。
今回で言えば、「東京都庁」という意味を持つのに本来の意味とかけ離れた「京都」が出てしまうなど。

そこで日本語の文章を分割するときはn=3を想定するっぽい。
簡単故にこれを実際の会話で使う文章生成に使うと割と精度が下がる。

n-gramのサンプル

今回は、「青空文庫」さんから夏目漱石の「こころ」をお借りしました。
事前にutf-8にしてあれこれ邪魔な記述を抜かして使用します。

これに対してn = 3の時のn-gram、つまりtri-gramで分割しました。

ソースコードは次の通り。

import scala.io.Source
import scala.io.BufferedSource
import scala.collection.mutable.Map

object Ngram{

  //3文字ずつ分割していく
  private [this] val n:Int = 3

    
  def main(args:Array[String]):Unit = {
      
      //文字列とその出現頻度を格納
      var ngramMap:Map[String,Int] = Map[String,Int]()
      

      //ファイルを読み込む
      val source = Source.fromFile("kokoro.dat","utf-8")

      //1行ずつ読み込む
      val lines:Iterator[String] = source.getLines

      //ngramで分割し格納
      for(line <- lines){

        var tmp_line:String = line

        while(tmp_line.length >= this.n){
          
          var subString:String = tmp_line.take(this.n)

          //切り出した文字列が今までに出てないなら追加
          //出現しているなら出現回数の更新
          if(!ngramMap.contains(subString)){
            ngramMap += (subString -> 1)
          }else{
            var count:Int = ngramMap(subString) + 1
            ngramMap.update(subString, count)
          }
          
          //先頭文字の除去
          tmp_line = tmp_line.tail
        }

      }

      val result_key:Iterable[String] = ngramMap.keys
      for(key <- result_key){
        println(s"${key} ${ngramMap(key)}")
      }
            
  }

}


これをコンパイルして次のように実行する。

$ scala Ngram | sort -r -nk2 | head

そうすると、よく使われる部分文字列ベスト10が切り出せた。

部分文字列 出現回数
した。 1464
ました 1026
った。 856
です。 789
のです 776
かった 593
たので 562
なかっ 470
ってい 397
奥さん 386

語尾とか接続詞的なあれこれは頻度高いのわかるが「奥さん」…。

マルコフ連鎖とは

マルコフ連鎖とは、ある事象がその直近の事象のみに影響を受けて確率的に変化するという考えかた。
これにはマルコフ性という、次に起こる事象が過去に起きた事象の影響を受けないという性質がなければならない。

もっと言えば、マルコフ性を備えた確率過程のことをマルコフ過程といい、その中でも状態空間が連続ではなく離散的である場合を特にマルコフ連鎖という。

身近な例を上げるなら、すごろくや人生ゲームといったものが一種のマルコフ連鎖の例と言える。

今回はこれを自然言語処理、特にn-gramで分割したものに対して適用する。

n-gramマルコフ連鎖を使った文章生成

本来は確率を使ってどうこうするけど、Scalaでそれをやってしまうと処理速度的に心配なので次に出てくる文字列をひたすら追加しそこからランダムで選択することにした。

それが次のコード

import scala.io.{Source,BufferedSource}
import scala.collection.mutable.{Map,ArrayBuffer}
import scala.util.Random

object Markov{

  //tri-gramを想定
  private [this] val n:Int = 3

  def main(args:Array[String]):Unit = {

    //ngramの分割結果と次に続く文字列を格納する
    var ngramMap:Map[String,ArrayBuffer[String]] 
      = Map[String,ArrayBuffer[String]]()

    //ファイルから一行ずつ読み込む
    val source:BufferedSource = Source.fromFile("kokoro.dat","utf-8")
    val lines:Iterator[String] = source.getLines


    //ngramで分割
    for(line <- lines){

      var tmp_line:String = line
      var split_str:String = tmp_line.take(this.n)

      //先頭文字列だけ独立して追加
      if(!ngramMap.contains(tmp_line.take(this.n)))
         ngramMap += ( split_str -> ArrayBuffer.empty[String] )

      tmp_line = tmp_line.tail

      while(tmp_line.length >= this.n){
        
        var ngramArray:ArrayBuffer[String] = ngramMap(split_str)
        ngramArray += tmp_line.take(this.n)
        ngramMap.update(split_str,ngramArray)
        
        if( !ngramMap.contains(tmp_line.take(this.n)) )
          ngramMap += (tmp_line.take(this.n) -> ArrayBuffer.empty[String])

        split_str = tmp_line.take(this.n)
        tmp_line = tmp_line.tail
      }
    }


    //先頭文字列選択を行う
    val rnd:Random = new Random
    var result_str:String = ngramMap.keys.toList(rnd.nextInt(ngramMap.size)) 

    var tmp_str:String = result_str
    while(!result_str.contains("。")){
      var next_wordArray:ArrayBuffer[String] = ngramMap(tmp_str)
      tmp_str = next_wordArray(rnd.nextInt(next_wordArray.size))
      result_str += tmp_str.last
    }


    println(result_str)

  }
}

これを実行することによって得たいくつかの文章は次の通り
ひどい文もできていたので比較的ましなものを選択した。

叔父だの叔母だの、その性質としてよかった。
耳に異様な調子をもっと底の方に沈んだ心を大事そうに聞いた。
端書を受けない事はできないかと疑ってみました。
かも彼らは、退屈のために箒で背中を向けた。
今東京へ出て来たといって褒めるのですから、私には分りませんでした。
生と異なる点を明白に述べなければ純白でなくっちゃなるまですでに妻を迎えたらしい。
父に万事をやっ付けて離さない悠長な田舎にありませんでした。
思うかと、奥さんをどうしてもいいました
酸にも聞こえる試しはまるで頼りにするのは定めていた私が、それは迷惑そうな顔をちょっと顔だけ向け直して来て、いつの間にか暮れて春になりました。
まだ起きているのであった。

ngramだと単語が意味を持たないので、計算コストは低いけど出来上がる文が時折変な文になってしまう。
マルコフ連鎖を採用しているのも原因の一つであるけど。


対話botへの応用

これをどう対話botに応用するかといえば、今回はngramとマルコフ連鎖を使ったわけだがそれを例にするなら
ngramで分割する対象データをtwitterfacebookといった比較的人が会話で使う構造をしているものにするといったことが考えられる。
文章生成に関してはこのままマルコフ連鎖で生成できる。

自分が発話した内容に関してもngramを用いてどんどんデータを追加していくとなおさら面白いかもしれない。

Oracle Code Japan Tour in Sapporoに行ってきた

f:id:RabbitFoot141:20170605193043p:plain

はじめに

Oracle Code Japan TourがSapporoにくるとのことで初めて情報系のイベントに参加してみた。
というわけで実際に得た情報をあれこれまとめてみた。

すごいメモのような感じになっているので間違ってたらコメントなどくれると嬉しい。

Feed Back from Java Day Tokyo 2017

Java + Dockerが現在利用できるようになっている。
javaだけでなくoracleの製品も利用できるようになった。

java ee8修正案としてhttp2の実装がありになったりリアクティブプログラミングができるようになったりしていくとのこと
非同期と同期を組み合わせて高速化を図る。

javaの最新情報は以下にある
builder.japan.zdnet.com


Raspberry Pi with Java 9

jlinkというコマンドの話
必要なモジュールなどのみでjreを作成できるコマンド
ラズパイみたいにリソースが限られている時に有効

java se9ではhttp2のあれこれが乗っかる。

se9ではarm v5とarm v6(raspberry pi a,b,b+,zero)には未対応
そこでjavaを使いたいなら8以下のものを使うひつようが出てくる。

javafxiphone,androidで使いたくなったらgluonが開発してるヤツを使える。
gluonhq.com


javaでラズパイのあれこれを動かすためのプロジェクトがあるためハードウェア制御などをjavaでも行うことができる。

ここではそのデモをみて大半が終わってしまった。
ただラズパイ上でjavaを動かすのも楽しそうだと思った。

Cloud Native Java EE

ここはjava ee使わんしネットワークとかあれこれやってないから普通に話聞いて面白いなぐらいしか感想がない。
ただdockerと組み合わせるのが面白かった。

あと
JOnsen – Java Unconference at a Japanese Onsen
っていうアンカンファレンスの話聞けてよかった。


Java SE 9のススメ

ここではjava9での互換性、新機能、改善点などについての話だった

互換性

java9で互換性がなくなったものがいくつかある

言語仕様とライブラリ

java se8ではアンダースコアを1文字変数名として使用できたが警告がでる状況だったが、se9からはアンダースコア1文字だけではコンパイルエラーとなる。

@deprecatedの付いているメソッドについて、今まではずっと残ってきたものでも本当になくなる可能性があるとのこと。
特にGUI関連のものや、OSに比較的依存したものがJigsawプロジェクトによりブラックオックス化される可能性が高いそう。

保守、運用

virtual VM,hprof,jhatなどなどのツールがno moreとなってしまう。

デフォルトのGCが現行のものだとParallel GCなところがG1GCに変更になる。
またそれ以前のCMSはdeprecatedになり今後のアップデートで消える可能性がある。

CMSとG1GCでは使えないのでゴリゴリチューニングしている人は注意が必要。

ただしメモリサイズが小さいマシンなどではparallel GCを使うのがよい。

新機能

今回は大きく分けて3つ

  • Project Jigsaw
  • JShell
  • Reactive Streams

が紹介された。

Project Jigsaw

背景:大規模システムになるとクラスパスが300個近くになることがあるが、実際バージョン違いだけだったりするのにこれはどうなのという問題
俗に言うjar hellに陥る問題。
ライブラリ更新で動作不良を起こしたり、publicがpublicすぎる問題などなど。

これらを辿って行くと依存性の欠如であったり、公開範囲を適切に設定できないなどなど。

これをモジュールにして解決しようというのがProject Jigsaw


モジュールに関して
現行のjarはほぼそのまま使える。
jarファイル中にメタ情報を付加する。
それらを管理するmodule-info.javaの有無が現行とse9のおおきな違い。

クラスパスが消えてモジュールパスに統一される可能性がある。


その他としてjava.baseにjava.langやjava.utilなどが統一されScalaっぽくimportしなくても使えるみたい

依存性の調査は

jdeps -s ファイル名.jar

でそのファイルが使ってるモジュールを表示してくれる。
それをもとにモジュールのあれこれを作成できるようになる。

JShell

javaのreplツール
jshellコマンドを打つと使用できるようになる。
ちなみに行末の;を省略してもいい
同じ変数名で別のデータ型の変数を宣言すると一番最後に変更したものに置換される。

Reactive Streams

非同期処理のためのインターフェース
http://www.reactice-streams.org
back pressureがあるタイプのPublish-Subscribeモデル。
subscriberがpublisherに要求するとsubscriptionが独自に生成されデータがどれだけ通過するか制限できるだか把握できるだか
ココらへんはあまり実感がわかなかった

改善

project coin
stream,collection

project coin

ダイヤモンド演算子などのあれこれに対するものだが
se8ではそれまでの問題がほとんど解決されたが匿名クラスでは使用できなかった。
それをse9では改善し、ほぼすべての場所でダイヤモンド演算子を使えるようになる。

Stream

ファクトリメソッドとして

  • ofNullable
  • iterate

が追加される。

そのほかのメソッドでは

  • take/dropWhile

^ Collectors.flatMapping

  • Collectors.filtering

が追加され関数型のあれこれが割と使えるようになる。

Optionalはstream,flatMapと併用を前提にした設計になる。
ifPresentOrElseが追加され、値がなかった時(Else)にどうするか記述できるようになる。
orの中にoptionalを書けるようになる。

ofメソッドも追加され

List<Integer> list = List.of(1,2,3)

と実装できる。
これはイミュータブルとして生成される。

その他

javadochtml5に対応。
検索窓が追加されるがデフォルトで検索窓にフォーカスがあてられるためスペースでしたにいけなくなった。

リリースは2017/09/21に変更になった。
JDK 9 Early-Access Builds
ここで最新情報をあされる。

追記(2017/06/04)

このセッションを担当してくださった桜庭さんの方から資料がアップされたのでここにも掲示。

www.slideshare.net


まとめ

初めての情報系勉強会参加だったけどかなり面白かった。
普段Scalaしか書かないけどJavaのあれこれも面白そうだと感じた

自分なりの、プログラミングを楽しむためのベストプラクティス

はじめに

大学や専門学校、高校中学や老若男女問わず、これからプログラミングを始める初心者の人がどうすればプログラミングを楽しめるか。
案外むずかしいこの話題に関して、自分の経験を踏まえた自分なりのベストプラクティスをまとめてみた。


自分は高校入学と共にプログラミングを始め、独学でJavaScala,C,Pythonなどを学びプログラムを組んできた。
本来、この手のものは誰かに教えてもらう方がいいのだが、ほぼ独学でスキルを磨いてきた経験が多少なりとも役立てばいいと思う。


この記事はあくまでも個人的な意見であり、プログラミングを楽しむにはどうしたらいいかということをまとめただけなので、プロのマサカリはご遠慮願いたい。
もしそれでもマサカリを投げたくなったらこのブログではなく、私のgithubにはいくつか進行系のプロジェクトがあるのでそちらにお願いしたい。

github.com



この記事は楽しむことに重きをおいている
楽しまなければ、いくら魅力的でもそれを実感せずに終わってしまうからだ。


それでは、はじめよう。

プログラミング言語を選ぶ

プログラミングを楽しむ上でこれがまず最初の難関になるだろう。
そして、ここで選択を誤ってしまうと途端にプログラミングがとてもつまらないものになってしまう。
しかもたちが悪いことに、プログラミングを実際にその言語で行うまで自分が誤った選択をしたと気付けない。


楽しさには個人差があるのでここではざっくりと「こういう言語がいいのでは」ということをまとめる。


プログラミングを楽しみたい人には2つのタイプがあるように感じる。

  • 真っ黒な画面に文字が出ること自体を面白いと感じる人
  • 具体的な何かソフトウェアを作り上げ面白いと感じる人


このどちらに当てはまるかで言語選択は大きく変わる。

真っ黒な画面に文字が出る。これを面白いと感じる人


このタイプに当てはまる人は迷わず「C言語」や「C++」といった言語を選ぼう。


このタイプに当てはまる人は非常に少ないがそういった言語を選ぶことで情報工学のあれこれに触れることができる。
それ自体を面白いと感じ、自分で勉強をする事が苦ではなくなるだろう。


初めに紹介した言語でなくても、このタイプの人は「この言語やってみたい」というものを選んでもきっと楽しめるだろう。

なのでここではこれ以上取り上げない。

具体的なソフトウェアを作り上げ面白いと感じる人


このタイプの人は間違っても「C言語」や「C++」といった言語を選択してはならない。
よくネットでは「プログラミングするならCから始めろ」や「いいやアセンブリから始めろ」という過激派な意見を多々見るがこれに惑わされてはいけない。
そういった意見はあなたがプログラミングを始め、楽しむことを阻む。


実際、あれらの言語は環境にもよるが目でみてわかるものを作りにくい傾向にある。
なので、画面に文字を表示するだけのどこが面白いのかとすぐに飽きてしまうだろう。


ただ、このタイプに当てはまる人は大勢いるので、そういった人のためにおすすめの言語をいくつかまとめる。

  • Java
    • GUI(メモ帳などウィンドウとしてでるプログラム)が非常に作りやすい
    • Androidアプリケーションも作れるので目で見てわかる成果を作りやすい
  • Python
    • 最近注目の言語。文法が短く手軽に書ける。簡単。
    • GUIもWebもいける言語
    • 画像を扱ったりもできるので目で見てわかるものを作りやすい
  • Ruby
    • 日本発祥の言語。Pythonと似たような部分が多い。
    • 日本語の情報が多く困ったことがあればググれば大抵解決できる
  • JavaScript
    • webブラウザで動作する言語。
    • html/cssなど簡単なのと一番目で見てわかる成果を作りやすい。


ここで取り上げた言語にはオブジェクト指向と言われるものが備わっている。
これはたいていの言語にあり、どれを選んでもきっとその後の助けにもなるだろう。

プログラミングを実際にしてみる

プログラミング言語を選んだら実際にプログラムを作って欲しい。
ただここで「Hello World!」を表示させ、画面にでる。これを面白いと思ったからといって容易に言語を変えないで欲しい。
それは、一時の感情に過ぎない。


実際はそれより多くの時間を使うことになるのだから。


プログラミングをする際は、できれば書籍で特に入門書を一冊持っておくのがいいだろう。
ネット上にも情報はたくさん転がっているが書籍を一冊もつことを強くすすめる。


実際にプログラムを組むといっても、初めは基礎的な文法を学ぶことになるだろう。
それをつまらないと思ったなら、いきなりGUIなどのアプリケーションを作成しながら学んでいくのもいい。
ネットで調べて、拾ったコードを見様見真似で書いてもいい。
コピペしてもいい。


とにかくなにかプログラムを作ってみよう。


ここで重要なのは諦めないこと。
諦めてしまっては何も面白いとも思えない、諦めずに苦戦しながらも何か一つでいい、簡単なものでいいのでつくり上げる
完成した頃にはとてつもなくプログラミングを面白く感じるだろう。

作るまでに、コピペしようが写経しようがどれほど汚いコードを書こうが関係ない。
大切なのは楽しむことなのだから。

勉強してみる

何か最初に作って、おもしろいと感じたならもう少し自分が使ってる言語や、情報系の関連技術について勉強してみよう。
今までに身につけた知識とつながりが感じられさらにおもしろく感じるだろう。


ここでは、どうやって勉強したらいいか取り上げる。


実際にプログラミングや情報系の関連技術の勉強をしていくなかで本やネットの情報を参考にすることだろう。
そういったとき、陥りやすいのが無知や周囲の出来る人と自分を比較し「自分には知らない事がたくさんある。ぜんぜん出来ない。」といったネガティブな感情である。


自分の無力さ、無能さを実感することがあるだろうがそれを気にしてはいけない。
これは誰もが通る道であり、あなたがすごいと思う人たちも皆通ってきた道であるから。


知らないことわからないことがいくらあろうが今は気にせず自分のペースで勉強しよう。

本やネットの情報を元に勉強する時

こういった場面で気をつけたいことがある。


初めたばかりの人は特にいくらテキストを読んでも「なんじゃこりゃ」となりやめてしまうことがある。


せっかくここまで来たのにそこでやめてしまってはもったいない。


そこでおすすめの勉強法がある。


わからない、読んでも理解できない。
こういったものが出てきたとき、実際にコードにして実行してみよう。


必ずしも読んで頭で理解する必要はない。
実際に動かし、自分のもつ疑問を実際の動作から感じとり解消しよう。


これは理解が止まったとき、無理に理解しようとするよりよっぽど有効な手段である。

一般的である必要はない

ここまで紹介したことはあまり一般的ではない。


学校などでは通常
CやってJavaやって…。
みたいにやり、学校が決めたとおりの手順で勉強する。


これは大抵の場合、あなたが楽しめるようなものではない。


そういったとき別なプログラミング言語に取り組んだり、自分でガンガン先に進んだりして欲しい。
自分のペースで勉強したとしても実際そんなに影響はない。


むしろ、無理して学校が決めたり他人が決めた手順でやったほうがその後に影響しやすい。


面白いと感じたなら、プログラミングを楽しみたいと感じたならぜひとも積極的に知識やスキルを身につけて欲しい。


最後に


ここまでくればプログラミングが楽しくなったり、情報系関連技術を実際に使うことが楽しく感じられるだろう。


最後に
あなたが実際にプログラミングをはじめたときや楽しみたいと思ったとき、こんなに上手くはいかないだろう。それが普通である。


それはこの記事を書いた自分も同じであった。
今まで嫌になるほどエラーとバグと格闘してきた。
幾度と無く、失敗と挫折を繰り返してきた。


ただそんな自分でも、楽しむことでなんとかある程度のプログラムを作れるスキルを身につけることができた。


失敗や周囲の評価を恐れず、型にはまらずあなたなりにとにかく楽しんで欲しい。
自分が楽しいと思うことをひたすらにやってほしい。


そうしてプログラミングを楽しんでくれる人が増える事を切に願う。

日本語版NetBeans8.2をUbuntuにいれてみた

なぜかNetBeansをいれることになった

友達曰く、「NetBeansが英語なのとプロジェクトを開けない」とのことで実際に検証してみた。
普段はVSCodeかVimとsbtでScala,Javaしか書かない人間のUbuntuにはそんな便利なもの入ってるわけもなく
実際に導入しながらそれらを試してみた。

NetBeans日本語化できないのか?

最初から日本語化されてるのあったっぽい

ja.netbeans.org

ダウンロードした

ダウンロードして、homeディレクトリにnetbeans-8.2-javase-linux.shみたいなファイルを持ってくる。

インストールした

次のコマンド打ったらこんな出力でた

$ sh netbeans-8.2-javase-linux.sh 
インストーラを構成しています...
システムでJVMを検索しています...
インストール・データを抽出しています...
インストーラ・ウィザードを実行中...

これでインストーラが起動したので

f:id:RabbitFoot141:20170516231435j:plain

どんどん次へなり、進むなりを押していく

すると最高に嫌な予感がする。
こんなのが出てきた。

f:id:RabbitFoot141:20170516232508j:plain

これ無視し続けて、なんとかインストールすると

起動はするが、プロジェクト開くときにこんなのがでた

f:id:RabbitFoot141:20170516233126j:plain

まぁ開けないわな。

開き方を変えた

netbeansをいれたディレクトリに移動する

$ cd netbeans-8.2

そこでさらにbinディレクトリに移動する。

~/netbeans-8.2$ cd bin
~/netbeans-8.2/bin$

ここまできたら、次のコマンドを実行してjdkとやらの場所を確認する

~/netbeans-8.2/bin$/usr/sbin/update-java-alternatives -l
java-1.8.0-openjdk-amd64       1081       /usr/lib/jvm/java-1.8.0-openjdk-amd64
java-8-oracle                  1077       /usr/lib/jvm/java-8-oracle

みたいなことになるから、jdkのほうをコピペして次のコマンドで実行する

~/netbeans-8.2/bin$./netbeans --jdkhome /usr/lib/jvm/java-1.8.0-openjdk-amd64

これで使えるようになった(はず)。

それ以外で

UbuntuならUbuntu Softwareからインストールすると楽。
英語だけど。

最後に

一回使ってみたけど、やっぱりNetBeans使いにくい。

【メモ】sbtで自作ライブラリを使えるようにした話

とりあえず公開したかった。

なんか公開したかった。
sbtで使えるようにしたかった。

何をやったか

とりあえず次のサイトを参考にしてあれこれした

qiita.com
qiita.com
d.hatena.ne.jp


具体的には

  • ライブラリをビルドする
  • github pagesを作成しそこにビルドしたやつをぶん投げる
  • wgetでテストする
  • sbtで使えるかテストする

ライブラリをビルドする。

とりあえず、sbtプロジェクトに作成してるであろうBuild.scala,build.sbt的なあれこれに次を追加する。

Build.scalaならsettingsの中に突っ込んでください。
それ以外のname,version,scalaVersionはもうすでに設定したものとする。

publishTo := Some(Resolver.file("名前",file("jar,pomなどを作成するディレクトリを指定"))(Patterns(true, Resolver.mavenStyleBasePattern)))

ここで一度プロジェクトをコンパイルする。

$ sbt compile


これでokなら次を実行する

$ sbt publish

するとさっき指定したディレクトリに「名前」のディレクトリとその直下に「名前_ScalaVersion」のディレクトリが生成されている

github pagesを作成しそこにビルドしたやつをぶん投げる

公開したいライブラリがgithubのレポジトリにあるとして、そのレポジトリにgh-pagesというブランチを作る。
とりあえずそこにindex.htmlを投げる。

そしていつもどおりgh-pagesにpushする。

その勢いでさっきビルドしたあれこれをぶん投げる。
手順はこれで終わり。

wgetでテストする

次のコマンドを走らせてdlできればok

 wget https://[username].github.io/reponame/projectname/projectname_scalaVersion/version/projectname_scalaVersion-version.jar

これでダウンロードできないなら何かしら失敗しているか、gh-pagesの反映に時間がかかることがあるので最初にリンクを張ったサイトをみてどうにかしてみる。

sbtで使えるかテストする

適当にプロジェクト作るかどうにかして別のBuild.scalaで使うには次のようにする

//ライブラリを追加するところに
"projectName" % "projectName_scalaVersion" % "Version"

//resolverを作って次を記述
resolvers += "Maven Repo on github" at "https://[username].github.io/projectName/"


これでダウンロードできる(はず)